Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 3140, 2023 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-37280258

RESUMEN

Eighty percent of the estimated 600 million domestic cats in the world are free-roaming. These cats typically experience suboptimal welfare and inflict high levels of predation on wildlife. Additionally, euthanasia of healthy animals in overpopulated shelters raises ethical considerations. While surgical sterilization is the mainstay of pet population control, there is a need for efficient, safe, and cost-effective permanent contraception alternatives. Herein, we report evidence that a single intramuscular treatment with an adeno-associated viral vector delivering an anti-Müllerian hormone transgene produces long-term contraception in the domestic cat. Treated females are followed for over two years, during which transgene expression, anti-transgene antibodies, and reproductive hormones are monitored. Mating behavior and reproductive success are measured during two mating studies. Here we show that ectopic expression of anti-Müllerian hormone does not impair sex steroids nor estrous cycling, but prevents breeding-induced ovulation, resulting in safe and durable contraception in the female domestic cat.


Asunto(s)
Hormona Antimülleriana , Hormonas Peptídicas , Gatos , Animales , Femenino , Hormona Antimülleriana/genética , Anticoncepción/métodos , Anticoncepción/veterinaria , Esterilización Reproductiva/métodos , Esterilización Reproductiva/veterinaria , Regulación de la Población/métodos , Animales Salvajes
2.
Elife ; 112022 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-36205477

RESUMEN

The estrous cycle is regulated by rhythmic endocrine interactions of the nervous and reproductive systems, which coordinate the hormonal and ovulatory functions of the ovary. Folliculogenesis and follicle progression require the orchestrated response of a variety of cell types to allow the maturation of the follicle and its sequela, ovulation, corpus luteum formation, and ovulatory wound repair. Little is known about the cell state dynamics of the ovary during the estrous cycle and the paracrine factors that help coordinate this process. Herein, we used single-cell RNA sequencing to evaluate the transcriptome of >34,000 cells of the adult mouse ovary and describe the transcriptional changes that occur across the normal estrous cycle and other reproductive states to build a comprehensive dynamic atlas of murine ovarian cell types and states.


Asunto(s)
Ovario , Ovulación , Animales , Ciclo Estral/fisiología , Femenino , Ratones , Folículo Ovárico/fisiología , Ovulación/fisiología , Pelvis
3.
Proc Natl Acad Sci U S A ; 118(20)2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-33980714

RESUMEN

Müllerian inhibiting substance (MIS/AMH), produced by granulosa cells of growing follicles, is an important regulator of folliculogenesis and follicle development. Treatment with exogenous MIS in mice suppresses follicle development and prevents ovulation. To investigate the mechanisms by which MIS inhibits follicle development, we performed single-cell RNA sequencing of whole neonatal ovaries treated with MIS at birth and analyzed at postnatal day 6, coinciding with the first wave of follicle growth. We identified distinct transcriptional signatures associated with MIS responses in the ovarian cell types. MIS treatment inhibited proliferation in granulosa, surface epithelial, and stromal cell types of the ovary and elicited a unique signature of quiescence in granulosa cells. In addition to decreasing the number of growing preantral follicles, we found that MIS treatment uncoupled the maturation of germ cells and granulosa cells. In conclusion, MIS suppressed neonatal follicle development by inhibiting proliferation, imposing a quiescent cell state, and preventing granulosa cell differentiation.


Asunto(s)
Hormona Antimülleriana/farmacología , Ovario/efectos de los fármacos , Animales , Animales Recién Nacidos , Diferenciación Celular/efectos de los fármacos , Femenino , Inhibinas/análisis , Ratones , Ratones Endogámicos C57BL , Folículo Ovárico/efectos de los fármacos , Folículo Ovárico/fisiología , Ovario/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores de Péptidos/análisis , Receptores de Factores de Crecimiento Transformadores beta/análisis , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Transcripción Genética/efectos de los fármacos
4.
Sci Rep ; 11(1): 1079, 2021 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-33441767

RESUMEN

Liver receptor homolog-1 (NR5A2) is expressed specifically in granulosa cells of developing ovarian follicles where it regulates the late stages of follicle development and ovulation. To establish its effects earlier in the trajectory of follicular development, NR5A2 was depleted from granulosa cells of murine primordial and primary follicles. Follicle populations were enumerated in neonates at postnatal day 4 (PND4) coinciding with the end of the formation of the primordial follicle pool. The frequency of primordial follicles in PND4 conditional knockout (cKO) ovaries was greater and primary follicles were substantially fewer relative to control (CON) counterparts. Ten-day in vitro culture of PND4 ovaries recapitulated in vivo findings and indicated that CON mice developed primary follicles in the ovarian medulla to a greater extent than did cKO animals. Two subsets of primordial follicles were observed in wildtype ovaries: one that expressed NR5A2 and the second in which the transcript was absent. Neither expressed the mitotic marker. KI-67, indicating their developmental quiescence. RNA sequencing on PND4 demonstrated that loss of NR5A2 induced changes in 432 transcripts, including quiescence markers, inhibitors of follicle activation, and regulators of cellular migration and epithelial-to-mesenchymal transition. These experiments suggest that NR5A2 expression poises primordial follicles for entry into the developing pool.


Asunto(s)
Folículo Ovárico/citología , Receptores Citoplasmáticos y Nucleares/metabolismo , Animales , Femenino , Eliminación de Gen , Expresión Génica , Ratones , Ratones Endogámicos C57BL , Folículo Ovárico/metabolismo , Folículo Ovárico/ultraestructura , Receptores Citoplasmáticos y Nucleares/genética , Transcriptoma
5.
J Endocr Soc ; 3(11): 2123-2134, 2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31687639

RESUMEN

Müllerian-inhibiting substance (MIS), also known as anti-Müllerian hormone, is thought to be a negative regulator of primordial follicle activation. We have previously reported that treatment with exogenous MIS can induce complete ovarian suppression within 5 weeks of treatment in mice. To investigate the kinetics of the return of folliculogenesis following the reversal of suppression, we treated animals with recombinant human MIS (rhMIS) protein for 40 days in adult female Nu/Nu mice and monitored the recovery of each follicle type over time. Following cessation of MIS therapy, secondary, and antral follicles returned within 30 days, along with the normalization of reproductive hormones, including LH, FSH, MIS, and Inhibin B. Furthermore, 30 days following MIS pretreatment, the number of antral follicles were significantly higher than controls, and superovulation with timed pregnant mare serum gonadotropin and human chorionic gonadotropin stimulation at this time point resulted in an approximately threefold increased yield of eggs. Use of the combined rhMIS-gonadotropin superovulation regimen in a diminished ovarian reserve (DOR) mouse model, created by 4-vinylcyclohexene dioxide treatment, also resulted in a twofold improvement in the yield of eggs. In conclusion, treatment with rhMIS can induce a reversible ovarian suppression, following which a rapid and synchronized large initial wave of growing follicles can be harnessed to enhance the response to superovulation. Therapies modulating MIS signaling may therefore augment the response to current ovarian stimulation protocols and could be particularly useful to women with DOR or poor responders to controlled ovarian hyperstimulation during in vitro fertilization.

6.
Immunity ; 50(5): 1317-1334.e10, 2019 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-30979687

RESUMEN

Tumor-infiltrating myeloid cells (TIMs) comprise monocytes, macrophages, dendritic cells, and neutrophils, and have emerged as key regulators of cancer growth. These cells can diversify into a spectrum of states, which might promote or limit tumor outgrowth but remain poorly understood. Here, we used single-cell RNA sequencing (scRNA-seq) to map TIMs in non-small-cell lung cancer patients. We uncovered 25 TIM states, most of which were reproducibly found across patients. To facilitate translational research of these populations, we also profiled TIMs in mice. In comparing TIMs across species, we identified a near-complete congruence of population structures among dendritic cells and monocytes; conserved neutrophil subsets; and species differences among macrophages. By contrast, myeloid cell population structures in patients' blood showed limited overlap with those of TIMs. This study determines the lung TIM landscape and sets the stage for future investigations into the potential of TIMs as immunotherapy targets.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/inmunología , Células Dendríticas/inmunología , Neoplasias Pulmonares/inmunología , Macrófagos/inmunología , Monocitos/inmunología , Neutrófilos/inmunología , Animales , Secuencia de Bases , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Perfilación de la Expresión Génica , Humanos , Pulmón/inmunología , Pulmón/patología , Neoplasias Pulmonares/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Análisis de Secuencia de ARN
7.
Proc Natl Acad Sci U S A ; 114(9): E1688-E1697, 2017 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-28137855

RESUMEN

The ovarian reserve represents the stock of quiescent primordial follicles in the ovary which is gradually depleted during a woman's reproductive lifespan, resulting in menopause. Müllerian inhibiting substance (MIS) (or anti-Müllerian hormone/AMH), which is produced by granulosa cells of growing follicles, has been proposed as a negative regulator of primordial follicle activation. Here we show that long-term parenteral administration of superphysiological doses of MIS, using either an adeno-associated virus serotype 9 (AAV9) gene therapy vector or recombinant protein, resulted in a complete arrest of folliculogenesis in mice. The ovaries of MIS-treated mice were smaller than those in controls and did not contain growing follicles but retained a normal ovarian reserve. When mice treated with AAV9/MIS were paired with male breeders, they exhibited complete and permanent contraception for their entire reproductive lifespan, disrupted vaginal cycling, and hypergonadotropic hypogonadism. However, when ovaries from AAV9-MIS-treated mice were transplanted orthotopically into normal recipient mice, or when treatment with the protein was discontinued, folliculogenesis resumed, suggesting reversibility. One of the important causes of primary ovarian insufficiency is chemotherapy-induced primordial follicle depletion, which has been proposed to be mediated in part by increased activation. To test the hypothesis that MIS could prevent chemotherapy-induced overactivation, mice were given carboplatin, doxorubicin, or cyclophosphamide and were cotreated with AAV9-MIS, recombinant MIS protein, or vehicle controls. We found significantly more primordial follicles in MIS-treated animals than in controls. Thus treatment with MIS may provide a method of contraception with the unique characteristic of blocking primordial follicle activation that could be exploited to prevent the primary ovarian insufficiency often associated with chemotherapy.


Asunto(s)
Hormona Antimülleriana/farmacología , Antineoplásicos/efectos adversos , Anticonceptivos/farmacología , Folículo Ovárico/efectos de los fármacos , Reserva Ovárica/efectos de los fármacos , Animales , Anticoncepción/métodos , Dependovirus/metabolismo , Femenino , Células de la Granulosa/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Insuficiencia Ovárica Primaria/prevención & control , Reproducción/efectos de los fármacos
8.
J Assist Reprod Genet ; 32(12): 1741-7, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26507072

RESUMEN

PURPOSE: Foxo3 protein is required in the oocyte nucleus for the maintenance of primordial follicles in a dormant state. PI3K/AKT-dependent phosphorylation of Foxo3 leads to its relocalization to the cytoplasm and subsequent follicular activation. However, the nature of the upstream signals controlling Foxo3 activity and subcellular localization remains unknown. We aimed to study the in vitro effects of Kit ligand (stem cell factor) on the subcellular localization of Foxo3 in primordial follicles within the postnatal mouse ovary. METHODS: This was an in vitro study using explants of intact neonatal mouse ovaries. The study was performed in laboratory animal facility and basic science research laboratory at a University Hospital. The animals used for this study were FVB mice. Neonatal FVB mice ovaries at postnatal day 7 (PD7) were harvested and incubated in culture medium (DMEM) at 37 °C and 5 % CO(2) for 60-90 min with (n = 3) or without (n = 3) Kit ligand at 150 ng/mL (8 nM). Similar experimental conditions were used to establish a dose-response curve for the effects of Kit ligand and assess the effects of imatinib (small molecule inhibitor of the Kit receptor). Immunofluorescence was used to identify the subcellular location of Foxo3 in oocytes. Proportions of cytoplasmic versus nuclear Foxo3 in primordial follicles were determined. RESULTS: Kit ligand treatment increased the cytoplasmic localization of Foxo3 from 40 % in the untreated ovaries to 74 % in the treated group (p = 0.007 in paired samples and p = 0.03 in unpaired samples). Furthermore, this effect was reversible with imatinib (p = 0.005). A dose-response curve for Kit ligand treatment showed that maximum effect was seen at 150 ng/mL. CONCLUSION: Kit ligand treatment in vitro increases the proportion of cytoplasmic Foxo3 in primordial follicles at PD7, lending support to the idea that Kit receptor/ligand controls Foxo3 activity in the context of primordial follicle activation.


Asunto(s)
Factores de Transcripción Forkhead/fisiología , Ovario/metabolismo , Factor de Células Madre/fisiología , Animales , Femenino , Proteína Forkhead Box O3 , Factores de Transcripción Forkhead/análisis , Factores de Transcripción Forkhead/metabolismo , Mesilato de Imatinib/farmacología , Técnicas In Vitro , Ratones , Oocitos/metabolismo , Folículo Ovárico/crecimiento & desarrollo , Folículo Ovárico/metabolismo , Factor de Células Madre/metabolismo
9.
J Clin Invest ; 125(11): 4063-76, 2015 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-26413869

RESUMEN

Endometrial cancer is the most common gynecologic malignancy and the fourth most common malignancy in women. For most patients in whom the disease is confined to the uterus, treatment results in successful remission; however, there are no curative treatments for tumors that have progressed beyond the uterus. The serine/threonine kinase LKB1 has been identified as a potent suppressor of uterine cancer, but the biological modes of action of LKB1 in this context remain incompletely understood. Here, we have shown that LKB1 suppresses tumor progression by altering gene expression in the tumor microenvironment. We determined that LKB1 inactivation results in abnormal, cell-autonomous production of the inflammatory cytokine chemokine (C-C motif) ligand 2 (CCL2) within tumors, which leads to increased recruitment of macrophages with prominent tumor-promoting activities. Inactivation of Ccl2 in an Lkb1-driven mouse model of endometrial cancer slowed tumor progression and increased survival. In human primary endometrial cancers, loss of LKB1 protein was strongly associated with increased CCL2 expression by tumor cells as well as increased macrophage density in the tumor microenvironment. These data demonstrate that CCL2 is a potent effector of LKB1 loss in endometrial cancer, creating potential avenues for therapeutic opportunities.


Asunto(s)
Adenocarcinoma/patología , Quimiocina CCL2/fisiología , Neoplasias Endometriales/patología , Macrófagos/inmunología , Proteínas de Neoplasias/fisiología , Proteínas Serina-Treonina Quinasas/deficiencia , Quinasas de la Proteína-Quinasa Activada por el AMP , Proteínas Quinasas Activadas por AMP/fisiología , Adenocarcinoma/tratamiento farmacológico , Adenocarcinoma/genética , Adenocarcinoma/inmunología , Animales , Quimiocina CCL2/antagonistas & inhibidores , Quimiocina CCL2/sangre , Ácido Clodrónico/farmacología , Ácido Clodrónico/uso terapéutico , Neoplasias Endometriales/tratamiento farmacológico , Neoplasias Endometriales/genética , Neoplasias Endometriales/inmunología , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Macrófagos/efectos de los fármacos , Ratones , Invasividad Neoplásica , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/sangre , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/fisiología , Interferencia de ARN , ARN Mensajero/biosíntesis , ARN Mensajero/genética , ARN Neoplásico/biosíntesis , ARN Neoplásico/genética , ARN Interferente Pequeño/genética , Organismos Libres de Patógenos Específicos , Transcripción Genética , Microambiente Tumoral
10.
J Clin Invest ; 124(9): 3929-44, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25133429

RESUMEN

Spermatogenesis is a complex, multistep process that maintains male fertility and is sustained by rare germline stem cells. Spermatogenic progression begins with spermatogonia, populations of which express distinct markers. The identity of the spermatogonial stem cell population in the undisturbed testis is controversial due to a lack of reliable and specific markers. Here we identified the transcription factor PAX7 as a specific marker of a rare subpopulation of A(single) spermatogonia in mice. PAX7+ cells were present in the testis at birth. Compared with the adult testis, PAX7+ cells constituted a much higher percentage of neonatal germ cells. Lineage tracing in healthy adult mice revealed that PAX7+ spermatogonia self-maintained and produced expanding clones that gave rise to mature spermatozoa. Interestingly, in mice subjected to chemotherapy and radiotherapy, both of which damage the vast majority of germ cells and can result in sterility, PAX7+ spermatogonia selectively survived, and their subsequent expansion contributed to the recovery of spermatogenesis. Finally, PAX7+ spermatogonia were present in the testes of a diverse set of mammals. Our data indicate that the PAX7+ subset of A(single) spermatogonia functions as robust testis stem cells that maintain fertility in normal spermatogenesis in healthy mice and mediate recovery after severe germline injury, such as occurs after cancer therapy.


Asunto(s)
Factor de Transcripción PAX7/fisiología , Células Madre/química , Testículo/citología , Animales , Infertilidad Masculina/etiología , Masculino , Ratones , Factor de Transcripción PAX7/análisis , Espermatogénesis , Espermatogonias/fisiología , Testículo/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...